IMS Performance - Getting The Most Out Of Your Monitoring Technology: Isolating And Solving Common Issues

Ed Woods

IBM Corporation

Session 9808

Tuesday, August 9th

9:30 - 10:30 AM

Agenda

- Understanding the workload
 - IMS as part of a bigger picture
- Real Time IMS monitoring examples
 - Typical steps in problem analysis
- Historical data collection considerations
- Alerting and corrective actions
- Integrated monitoring and management

IMS Is Part Of A Much Bigger Picture

- > IMS works as a central component of many critical applications
- > Application connectivity and flow may take many forms
- Understanding the flow helps drive monitoring requirements

Understanding The Flow Of IMS Processing What Are The Potential Bottlenecks?

Monitoring Information Real Time *versus* Historical *versus* Alerts

- A complete monitoring approach will commonly require elements of each of the following:
 - Real time performance and availability
 - Current resource utilization, availability, and status
 - Historical performance and availability
 - Detailed historical performance and availability information
 - Interval historical information for trending and analysis
 - Alerts and Automation
 - Alert notification of critical performance and availability issues
 - Notification of alerts (visual or via other means)
 - Automated corrective action (where appropriate)

Creating A Consolidated Monitoring Strategy To Analyze IMS Processing And Bottlenecks

- Managing and analyzing IMS performance depends upon an understanding of the flow of the workload
 - What is the workload?
 - What is the flow of the workload?
 - Where are the potential workload bottlenecks?
 - If the workload is bottlenecked, to what extent?
- → Build a monitoring strategy to focus on key metrics
 - Transaction response time with application grouping
 - Transaction rate information at various levels
 - IMS transaction response time correlated with transaction rate
 - Transaction enqueue/dequeue rate at various levels
 - Enqueue/dequeue rate at the system level, OTMA level, Fast Path level
 - Bottleneck analysis (wait states for the system and by workload group)
 - Transaction queue depth
 - Queuing at the system level and the transaction level
 - Queuing at other levels (FP BALG, MSC link, etc.)
 - Dependent region processing (region occupancy)

Examples Of Typical IMS Performance And Availability Challenges

- Poor IMS response time, trans queuing and/or bottlenecked
 - IMS transactions queued
 - IMS scheduling delays
 - IMS application performance/system bottlenecks
- → IMS connection bottlenecks
 - CICS/DBCTL connection bottlenecks
 - Network delays
 - Delays related to IMS Connect, OTMA, APPC, etc.
- → IMS database and subsystem delays
 - IMS database delays
 - High I/O, poor BP performance and IMS lock conflicts
- External subsystem (DB2) delays elongate IMS application time
 - DB2 thread connection issues
 - DB2 SQL delays
 - DB2 database I/O delays and BP performance
 - DB2 lock conflicts

Examples Of Typical IMS Performance And Availability Challenges

- Poor IMS response time, trans queuing and/or bottlenecked
 - IMS transactions queued
 - IMS scheduling delays
 - IMS application performance/system bottlenecks
- IMS connection bottlenecks
 - CICS/DBCTL connection bottlenecks
 - Network delays
 - Delays related to IMS Connect, OTMA, APPC, etc.
- → IMS database and subsystem delays
 - IMS database delays
 - High I/O, poor BP performance and IMS lock conflicts
- External subsystem (DB2) delays elongate IMS application time
 - DB2 thread connection issues
 - DB2 SQL delays
 - DB2 database I/O delays and BP performance
 - DB2 lock conflicts

Understanding The Workload Response Time Analysis

- Response Time Analysis (RTA) provides critical information on workload flow, issues, and outliers
- → RTA does several things
 - Captures detailed response time data from IMS and stores it in user-definable groups
 - Consider grouping related workload for analysis purposes
 - RTA measures queuing and service times within IMS
 - Input queue time, Processing time, Output queue time
 - Groups work in conjunction with Bottleneck Analysis
- RTA group considerations
 - Focus user-defined groups on key workload
 - Loved ones and problem children

Use Response Time Analysis To Understand Transaction Performance And To Identify Potential Issues

Input queue time Processing time Output queue time

Where is the issue?

RTA will show transaction response time for workload groups, broken down by component, and various time intervals.

```
______
         Transactions and LTERMs with the Longest Response Times
>RMON ON
                         Transactions
       Transactions with longest RO time
XMON
                                     (00:15)
       ΙD
                           R0
                                    ΙD
                                                       R0
+ IVP1 PART
            .000147 .000835 .000982
                   Logical Terminals
                                 Identify tran with longest
      Logical terminals with longest
                                 response times
               R1
                        ΙD
+ IVP1 IBMUSER
            .000982
```


Monitor The Flow Of The Workload Use Response Time Analysis To Identify Problems And Outliers

If RTA Indicates An Elongation Of Response Time Look At Transaction Rates And Transaction Queuing

Further Analysis – Are Transactions Queued? Drill Down For More Detail

IMS Dependent Region Display Understanding Scheduling And Processing Delays

Where Is The Bottleneck? Use Bottleneck Analysis To Identify Waits By Category

Examples Of Typical IMS Performance And Availability Challenges

- Poor IMS response time, trans queuing and/or bottlenecked
 - IMS transactions queued
 - IMS scheduling delays
 - IMS application performance/system bottlenecks
- → IMS connection bottlenecks
 - CICS/DBCTL connection bottlenecks
 - Network delays
 - Delays related to IMS Connect, OTMA, APPC, etc.
- IIVIS database and subsystem delays
 - IMS database delays
 - High I/O, poor BP performance and IMS lock conflicts
- → External subsystem (DB2) delays elongate IMS application time
 - DB2 thread connection issues
 - DB2 SQL delays
 - DB2 database I/O delays and BP performance
 - DB2 lock conflicts

Monitor IMS Connect Processing Track Transaction Level Response Time

IMS Connect monitoring provides detailed transaction level response time information.

Note – Detailed IMS Connect monitoring requires IMS Connect Extensions.

Understanding The Impact Of The Network On IMS Response Time

Examples Of Typical IMS Performance And Availability Challenges

- Poor IMS response time, trans queuing and/or bottlenecked
 - IMS transactions queued
 - IMS scheduling delays
 - IMS application performance/system bottlenecks
- → IMS connection bottlenecks
 - CICS/DBCTL connection bottlenecks
 - Network delays
 - Delays related to IMS Connect OTMA APPC etc.
- IMS database and subsystem delays
 - IMS database delays
 - High I/O, poor BP performance and IMS lock conflicts
- External subsystem (DB2) delays elongate IMS application time
 - DB2 thread connection issues
 - DB2 SQL delays
 - DB2 database I/O delays and BP performance
 - DB2 lock conflicts

IMS I/O Bottlenecks And Contention

IMS Lock Analysis Information In The Tivoli Portal

Examples Of Typical IMS Performance And Availability Challenges

- Poor IMS response time, trans queuing and/or bottlenecked
 - IMS transactions queued
 - IMS scheduling delays
 - IMS application performance/system bottlenecks
- → IMS connection bottlenecks
 - CICS/DBCTL connection bottlenecks
 - Network delays
 - Delays related to IMS Connect, OTMA, APPC, etc.
- → IMS database and subsystem delays
 - IMS database delays
 - High I/O, poor BP performance and IMS lock conflicts
- External subsystem (DB2) delays elongate IMS application time
 - DB2 thread connection issues
 - DB2 SQL delays
 - DB2 database I/O delays and BP performance
 - DB2 lock conflicts

Where Is The Bottleneck?

Use Bottleneck To Analyze Where The Workload May Be Bottlenecked

IMS Historical Performance And Availability Analysis Categories Of History Data Collection

Interval summary (with some detail)

Detail records

Recent detail

Interval snapshot trending

EPILOG Historical

- Historical analysis of response, bottlenecks and IMS resources
- Stored in VSAM Epilog Data Store (EDS) by group and time interval

TRF Historical

- Detailed transaction & database data
 individual transactions
- Detailed performance analysis & chargeback

Near Term Historical

Detail on recent transaction execution

Tivoli Enterprise Portal Historical

- Tivoli Data Warehouse history
- Use for trending analysis

Near Term History Of IMS Transactions

Use History To Track And Trend Key IMS Performance Indicators

IMS Historical Performance Analysis Workspace

Use Chart Functions For Statistical Analysis Are We Trending The Wrong Way?

Benefits Of An Integrated Alert Management Methodology

- Improved ability to manage increasingly complex composite applications
 - Enables an integrated approach to the management of subsystems, platforms, and application components
- Reduce time to problem resolution
 - Identify potential issues more rapidly
- Improved event management and problem isolation
 - More meaningful and useful problem alerts
- Improved event correlation and management
 - Eliminate the "noise" and focus on key issues
- → Superior performance analysis capabilities
 - Monitor and manage based upon actual information, not anecdotal data

Alert Example Using The Tivoli Enterprise Portal To Integrate Essential Performance Information And Manage Alerts

Situations – Usage And Benefits Highlight Performance And Availability Issues

Categories Of Typical Situation Alerts

Subsystem performance
Application performance
Identification of performance issues

Subsystem resource utilization Application resource utilization

Alert Notification Types And Options

- → Visual View Custom Views Enterprise View
 - Red/Yellow indicators and icons in Tivoli Enterprise Portal or TBSM displays
- Console messages
 - Example Issuing messages and commands to the z/OS console
 - Use this as a mechanism to feed other automation
- → Paging and emails
 - Issue commands to feed paging systems
 - Use 3rd party tools such as Postie to issue emails from the command prompt
 - Console messages may be used to feed email systems
- → SNMP traps and alerts
 - Issue SNMP traps from the command prompt using situations or policies
- → Netcool/OMNIbus events
 - OMNIbus acts as an event correlation engine
 - May receive events via traps or the EIF interface
- → Alerts to 3rd party (non-IBM) tools

Application Performance Example Situations To Monitor Response Time

Application Performance Example Monitoring Transaction Level Queuing

Subsystem Performance Example Monitor Dependent Region Processing

Subsystem Performance Example Monitoring Queuing At The Subsystem Level

Application Availability Example Alert On Critical Transactions In A Stopped Status

Create Situation Alerts When Certain Bottleneck Analysis Wait Percentages Exceed A Threshold

Create An Integrated View Of The Enterprise Ease Problem Notification/Isolation

Use OMEGAMON And The Tivoli Enterprise Portal To Consolidate Performance Analysis - Example

Summary

- → It's always important to begin with an understanding of the workload
- Have monitoring in place for key resources
- Consider History options along with real time
- Alerting can be important
- Integrated monitoring and management enables the 'Big Picture' view

Check Out My Blog http://tivoliwithaz.blogspot.com

Thank You!!